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Reichenbach proposed a three-valued logic to describe quantum mechanics. In 
his development, Reichenbach presented three different "negation" operators 
without providing any criteria for choosing among them. In this paper we develop 
two three-valued derived logics for classical systems. These logics are derived 
in that they are based on a theory of physical measurement. In this regard they 
have some of the characteristics of the quantum logic developed by Birkhoff and 
yon Neumann. The theory of measurement used in the present development is 
the one used previously in developing bivalent derived logics for classical systems. 
As these systems are derived logics, many of the ambiguities possessed by systems 
such as Reichenbach's are avoided. 

1. D E R I V E D  L O G I C S  

Westmoreland and Schumacher (1993) discussed the notion of  "derived 
logics." The prime motivation for this discussion was to adumbrate the status 
of  von Neumann-Birkof f - type  logics which have been proposed for the 
analysis o f  quantum mechanical systems. The term "derived logic" reflects 
the fact that the object language of  a physical theory is derived from the 
mathematical structure of  the space of  physical states for a given system. 
For example,  the von Neumann-Bi rkhof f  object language of  quantum 
mechanics is derived from the Hilbert space structure that standard quantum 
mechanics associates with a physical system. 

Let us consider a simpler example of  a derived logic in order to illustrate 
the concept. We take our system to be a point particle which is constrained 
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to lie somewhere along a line. R is the mathematical space of configurations 
for this system. We operate under the (unphysical) assumption that measure- 
ments of the particle's location are infinitely precise. Thus, we will be able 
to identify measurements with arbitrary subsets of R - - f o r  example, infinite 
precision allows us to determine experimentally whether the particle's coordi- 
nate is a rational number or not. A measurement in this dreamland consists 
in the unambiguous determination of whether the system's configuration lies 
within a particular set or not. 

In this system, propositions about the particle would be of the form: 
"The particle is in X," where X is a subset of R representing positions. In 
this case, propositions about the particle will also be identified with subsets 
of R. This is a result of the fact that any two distinct subsets of R may be 
distinguished from each other by some measurement. Indeed, given sets A 
and B in R, the measurement (subset) A n / v  (where the superscript c stands 
for complementation) will distinguish between the sets. 

Since we wish for logical operators to map sets of propositions to a 
proposition, we will identify logical operators with set operations as follows: 

A v B = A U B  (1) 

A ^ B = A n B (2) 

-~A = A ~ (3) 

A ---> B = A c U B (4) 

The expression on the right-hand side of each equation treats the objects A 
and B in their ordinary set-theoretic guises, each expression yielding the 
definition of the logical operator acting on A and B, now treated as proposi- 
tions, on the left-hand side. 

These definitions accord with our intuition concerning the truth of a 
proposition as determined by a measurement. For example, if a measurement 
yields true (respectively, false) for A and true (respectively, false) for B, the 
same measurement will yield true for A n B (respectively, false for A U B). 
Similarly, ~A is determined to be true by a measurement (respectively, false) 
if and only if A is determined to be false (respectively, true) by the same 
measurement. 

Given this mathematical state space and this theory of measurement, 
the derived logic for this system will be ordinary Boolean logic. This follows 
from the fact that the calculus of set operations is a Boolean lattice. It is 
interesting to note that a theory of measurement which is only slightly more 
sophisticated than the one considered here will yield non-Boolean logics. 

The main thesis of Westmoreland and Schumacher (1993) is that nonstan- 
dard derived logics are possible for a wider class of physical theories than 
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quantum mechanics. To illustrate this fact, two nonstandard logics are derived 
for classical mechanical systems. The nonstandard features of yon Neumann- 
Birkhoff logic flow from the Hilbert space (more specifically, the vector 
space) structure of quantum mechanics. The nonstandard features of the phase 
space logics derived in Westmoreland and Schumacher (1993) flow from the 
topological structure of the phase space associated with a physical system 
by classical dynamics. More specifically, the open phase space logic is derived 
from the structure of open subsets of the phase space, while closed phase 
space logic is derived from the structure of closed subsets of the phase space. 
These logics are motivated by a rudimentary theory of measurement, in which 
a given measurement outcome localizes the state of the system to an open 
set in phase space rather than an idealized point. Subsets of phase space 
which cannot be distinguished (in one sense or another) by such measurements 
must be identified with the same proposition in the derived logic. 4 

As noted in Westmoreland and Schumacher (1993), the law of ter t ium 

non datur  does not hold in open phase space logic. The possibility that the 
law of ter t ium non datur  is not a tautology has previously been a motivation 
for the development of three-valued logics as possible alternatives to standard 
Boolean logic (Lukasiewcz, 1970; Reichenbach, 1944; Rosser, 1941; Lewis 
and Langford, 1932; Rosser and Turquette, 1952). Thus, the possibility that 
a three-valued logic for classical mechanical systems is suggested. It is the 
purpose of this paper to develop and discuss two possible three-valued logics 
for classical systems as derived logics. One reason for developing a three 
valued der ived  logic is that we may hope to thereby avoid the ambiguity 
which often attends the selection of three-valued connectives. As pointed out 
in Rosser (1941), there are 12 distinct "negations" which are possible for a 
three-valued logic. The choice among these is to some degree ad hoc. Indeed, 
in the three-valued system he developed for quantum mechanics, Reichenbach 
(1944) chose to include three different negations. As we will show, the 
derivation of a three-valued logic from the mathematical structure of the state 
space eliminates some of the ad hoc features of the choice of connectives. 

2. OPEN PHASE SPACE LOGIC 

Westmoreland and Schumacher described two derived logics for classical 
mechanical systems; the open phase space logic and the closed phase space 

4 These derived phase space logics are distinct from the open set "logic of affirmative assertions" 
discussed by Vickers (1989), though they share a common motivation. Both approaches 
recognize that any set of measurements must be finite and thus can only provide approximate 
knowledge of the state of a system. However, Vickers identifies the propositions with open 
sets in the state space, rather than equivalence classes of sets that are indistinguishable by 
open sets. This leads to several differences; for example, the "logic of affirmative assertions" 
lacks a negation operator. 
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logic. As tertium non datur does not hold in open phase space logic (see 
Theorem 4 below), it is a natural candidate for a three-valued interpretation. 
In this section we describe those properties of the open phase space logic 
which deal with the structure of the propositions in the logic. As these are 
the same for both the bivalent and three-valued versions of open phase space 
logic, we will not distinguish between the two in the present section. In 
Section 3 we will exhibit statements about propositions in the three-valued 
logic and indicate how these differ from the bivalent case. 

Let P be a proposition; we recall from Westmoreland and Schumacher 
(1993) that this means that P is an equivalence class of sets. Distinct sets 
are in the same equivalence class P if and only if they have the same 
interior, as sets with the same interior cannot be verified by the same set of 
measurements (which are to be identified with open sets, as noted in the 
previous section). The properties of these propositions are determined by the 
topological properties of subsets of the phase space. Suppose V and W are 
arbitrary subsets of a topological space X. Then it is true that 

= (5) 

int(int V) = int V (6) 

v n  vr (7) 

v u  w (8) 

int V U int W C int(V U W) (9) 

int V n i n t  W = int(V n w)  (10) 

(V and int V denote the closure and interior of the set V, respectively.) Proofs 
of the above facts can be found in any introductory topology text (e.g., 
Munkres, 1974). 

As we stated earlier, we wish to find a single alternative proposition to 
P; this single alternative proposition will serve as the negation of P. The 
alternative which is readily suggested is [int(P~i)] where Pi is any element of 
P. This choice of the alternative proposition motivates our definitions of 
the three-valued operations corresponding to "or, .... and," and "not." These 
operators are defined as follows: 

Definition 2.1. Let P and Q be propositions. That is, P is the equivalence 
class [Pi] and Q is the equivalence class [Qi]" Then we define the logical 
operators ~ ("not"), ^ ("and"), and v ("or") as follows: 

-~P = [(int Pi) c] (11) 

P ^ Q = [(int Pi) n (int Qj)] (12) 
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P v Q = [(int Pi) U (int Qj)] (13) 

These definitions are all based on the notion that a proposition is to be 
identified with a substructure of the mathematical state space, in this case, 
an equivalence class of sets. 

Theorem 2.2. The operations v and ^ are both commutative and associa- 
tive. Furthermore, v distributes over ^, and ^ distributes over v. 

Proof. We will omit the proofs of commutativity and associativity, and 
give only the proof for the distributivity of ^ over v. Other parts of the proof 
are straightforward. 

Suppose A, B, and C are propositions in open phase space logic. Then 

A ^ (B v C) = lint A~] ^ lint B~ U int C,~] 

= lint A~ 1"3 int(int B~ U int C~)] 

Referring to the topological properties listed in (1)-(6), we see that 

A ^ (B v C) = lint A~ fq (int B~ U int C~)] 

= [(int A~ 1"3 int By) U (int A~ fq int Cn)] 

The intersection of  two open sets is open, so 

int V f'l int W = int(int V fq int W) (14) 

Thus, 

A ^ (B v C) = [int((int A~ fq int B~)) U int((int A~ f'l int Cn)) 

= [int A~ CI int B~] v [int A~ fq int C~] 

= (A A B) v (A A C) 

Therefore, ^ distributes over v in open phase space logic. The proof that v 
distributes over ^ is exactly similar. �9 

Theorem 2.3. For a proposition P, P ___ ~ ~ P  

Remark. Recall from Westmoreland and Schumacher (1993) that 
P _ Q means that for every set Pi in the equivalence class P there is a set 
Q./in Q such that ei C aj. 

Proof. Let P be a proposition; i.e.; 

p = [p i ]  

= lint P,.] 
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For any set S it is the case that int S C int((int (S~))c). This can be seen 
as follows: Let x ~ int S. Then there is a neighborhood of  x, denoted by Ux, 
such that Ux C_ int S C S. Hence, Ux O S c = 0 and so U~ O int(S ~) = 0. Thus 
U~ C (int(S~)) c, so that x E int((int(S~)) ~) and we have int S C int((int(S~)) c) as 
claimed. Thus, we may continue the proof of  the theorem: 

p _C [int((int(P~))~)] 

= ~[(int(P~/))] 

= ~'~[Pi] 

= -~-~p �9 

Theorem 2.4. In open phase space logic, A ^ -~A = 0 ("0" here denotes 
the equivalence class which contains the empty set, which is the never- 
verified, or always-false, proposition) for all propositions A (law of  noncontra- 
diction). On the other hand, A v -~A :/: 1 for some topological spaces; i.e., 
no ter t ium non datur  ("1" here denotes the equivalence class which contains 
the entire space, which is the always-verified, or always-true, proposition). 

Proof. By the definitions of  v and -~ we have 

A ^ -~A = [int A~] ^ [(int A~) ~] 

where A~ and A~ are any representatives of A. Let us choose both to be the 
canonical open representative Ao~ Then 

A A -~A = [Ao, O int((Ao,)c)] 

Since V n V c = 0 for any subset V of  X, and since int V C_ V, it follows 
that A~ O int((A,,) ~) = 13. Thus, A ^ -~A = 0, and so the law of  noncontradic- 
tion holds. 

On the other hand, suppose that our phase space is R 2 and that our 
proposition A is the equivalence class of  sets whose complement is the y 
axis. Then -~A = 0, so that A v -~A = A v 0 = A =/: 1, and so ter t ium non 
datur  does not hold. �9 

Theorem 2.5. For Propositions A and B in the open phase space logic, 

-~(A v B) = --,A ̂  -~B (15) 

~A v ~B _ '1(,4 ^ B) (16) 

In the second relation, equality need not hold. 
The proofs of these facts are straightforward. The two relations work 

out differently because of  the asymmetry between set union and intersection 
with respect to the interior operation. That is, by the topological properties 
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(1)-(6), the interior of the intersection of two sets is equal to the intersection 
of their interiors; however, in general the union of their interiors merely 
contains the interior of the union of those sets. 

It is interesting to note that the open phase space logic is Boolean if 
the underlying phase space has a discrete topology. (The phase spaces of 
ordinary classical dynamical systems, of course, do not.) Thus, the topological 
structure of the state space governs the character of the derived logic. 

We reiterate that these properties are independent of whether the state- 
ments are interpreted using a bivalent (P is verified or not verified) or a 
three-valued interpretation. For a discussion of the bivalent interpretation of 
open phase space logic see Westmoreland and Schumacher (1993). The 
description of the three-valued interpretation follows in Section 3. 

3. THREE-VALUED OPEN PHASE SPACE LOGIC 

In the rudimentary theory of measurement described by Westmoreland 
and Schumacher (1993), measurements were identified with open subsets of 
the phase space. This was motivated by the fact that classical measurements 
are inherently imprecise. With this in mind, it is said that a measurement 
(open set) m verifies a proposition P if and only if m C Pi for every set Pi 

P. These are the meanings we assign to the words "measurement" and 
"verify" throughout the remainder of this paper. 

Using a bivalent metalanguage in open phase space logic, we speak of 
verification as opposed to truth and falsehood. That is, a proposition P is 
verified or it is not verified. One might be tempted to call those propositions 
that are verified "true" and those that are not verified "false." The following 
description will show why this is not satisfactory. 

Let S be a classical system. Let P be a proposition about S in open 
phase space logic with P0 as the canonical representative of [P]. That is, P0 
= int(Pj) for all Pj~  [P]. A measurement ml that contains points of P0 but 
does not lie entirely in Po would not verify P. If we used truth and falsehood 
instead, we would say that P is false. It is clear that the measurement ml 
provides us with an ambiguous result. That it does not verify P is clear; it 
does not lie entirely within P0- Does this mean that we should conclude that 
P is false? The state of S could lie in P0 and still be consistent with the result 
of the measurement m~. Indeed, according to our naive measurement theory, 
there is a more precise measurement m which lies entirely in P0 and the 
result of m~. Thus, we see that we cannot conclude that P is false. 

As further evidence, let us now consider a measurement result m2 that 
is contained entirely in [int(~0)]; i.e., m2 contains no points of P0- Again, it 
is clear that this new measurement does not verify P. If we insist on using 
"truth" and "falsehood" instead of "verification," does the measurement m2 
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attribute the same degree of falsehood to P as m~ does? There is no more 
precise measurement of S consistent with m2 that can verify P. In fact, the 
equivalence class containing the complement of P0 is verified. There exist 
sets in the equivalence class P that have points in the result of m2, but none 
of these are interior points of  P0. Thus, according to our measurement theory, 
we cannot restrict the state S to these sets. Consequently, the measurement 
m2 is consistent with P being false. 

The argument above shows why it is troublesome to use the values 
"true" and "false" when using a bivalent language for open phase space logic. 
This is why the bivalent interpretation of  open phase space logic is phrased 
strictly in terms of verifiability. One means of incorporating "truth" and 
"falsehood" into open phase space logic is to use a three-valued interpretation 
of the logic. Let us now consider the possibility of implementing this approach. 

As we have seen in the discussion above, when a proposition P is not 
verified, it does not follow that the negation of  P is verified (i.e., "P  being 
not verified" is not equivalent to " ~ P  being verified"). Similarly, if the 
negation of P is not verified, we cannot conclude that P is verified. In other 
words, it is possible that a proposition and its negation may both fail to be 
verified. This is a reflection of the fact that tertium non datur does not hold 
in open phase space logic; i.e., P v ~ P  4: 1. As the canonical representatives 
of P and ~P  do not cover the entire space, one can reasonably expect there 
to be another alternative. It is the existence of  this third alternative that 
indicates that a three-valued interpretation may be useful for open phase 
space logic. 

There are two points worth noting at this juncture: First, when dealing 
with a three-valued logic one must take some care with defining the negation 
of a proposition. This contrasts with the situation one finds in a two-valued 
logic. In the two-valued case, only one negation is possible, but in a three- 
valued logic, the existence of more than one alternative value for a given 
proposition implies that more than one negation is possible. Indeed, in the 
case of the three-valued logic which Reichenbach developed for quantum 
mechanics, he identified three distinct negations. In the present development, 
as our analysis uses a derived logic, we are able to choose one negation; as 
we demonstrated in Section 2, this choice of  one negation is possible because, 
in a derived logic, logical connectives are associated with substructures of 
the mathematical state space which models the physical system. 

The following definitions will aid in establishing a three-valued interpre- 
tation for open phase space logic. 

Definition 3.1. For a set S i n t h e  topological space X, we define the 
boundary of S to be the set 0S = S N S c. A point x is a boundary point of 
S if x e OS. 
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Note: This definition implies that, for a given set, the interior and the 
boundary of  that set are disjoint. Also, for a given set A, it is the case that 
A = int(A) U O(A). 

Definition 3.2. Let S be a set in the topological space X. Then a point 
y on the boundary of  S is an adherent point iff every neighborhood of  y 
contains a point of  the interior of S. The set of  all the adherent points of  S 
is denoted by adhS. 

A few words may be in order concerning the idea of  adherent point. 
Consider a set Pi as an element of  the proposition P. Roughly speaking, the 
adherent points of  Pi are those boundary points which cannot be "pried away 
from P[ '  by any measurement. That is to say, x E OP~ is an adherent point 
of Pi if, for any open set m, (such as those representing measurements) 
containing x is such that m tq P~ has a nonempty interior. Stated yet another 
way: x ~ OPg is an adherent point if any measurement which contains x must 
also contain some of  the interior of  Pi- 

We want to look at some results involving adherent points, as this 
category of  points will prove useful in describing the three-valued open 
phase space logic. First, we will prove a result involving the interiors and 
complements of  sets. 

Theorem 3.3. For a set S in a topological space X, (int(S)) c = S ~. 

Proof. Let x E (int S) c. We know that int S C S = int S U OS. As x ~t 
intS, this implies thatx E OSorx  ~ (~)c. I f x  ~ OS, thenx e S-~by Definition 
1. On the other hand, if x e (S)c, then there exists a neighborhood Ux of x 
that does not intersect S [this follows from_ the fact that (5") ~ is an open set]. 
T h u s U x f q S = 0 ,  s o x  e U ~ C S  ~ C S  ~. In either case (x ~ oS or x ~ S ~) 
we have that x ~ S ~, so we may conclude that (int(S)) ~ C S ~. 

For the reverse containment, let x ~ S ~. By the definition of  closure, 
every neighborhood o f  x intersects S ~. As int S C S, we have that S ~ C (int 
S) ~, so every neighborhood of  x also intersects (int S) c. That is, x E (int S) ~. 
As int S is an open set, we know that (int S) c is its own closure. Hence, x 
E (int S) c, which implies that S ~ C (int 5") ~. As we have containment in both 
directions, we have proved that S c -- (int 5') ~. �9 

We now turn to several theorems concerning adherent points, as 
promised. 

Theorem 3.4. If  S is an open set, then the set of  boundary points of  S 
is equal to the set of  adherent points of  S; i.e., OS = adh(S). 

Proof. Let x ~ OS; this implies that x ~ S. Thus every neighborhood 
of x contains a point y E S. As S is an open set, we have that y E int(S). 
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Hence every neighborhood of  x contains a point in the interior of  S, so x E 
adh(S). Thus, OS C adh(S). By definition we know that adh(S) C OS, so we 
have that adh(S) = OS. �9 

Theorem 3.5. Let [R] = [S] [i.e., let int(R) = int(S)]; then adh(R) 
= adh(S). 

Proof. Let x ~ adh(R). By the definition of  adherent point, we know 
that x E OR and that every neighborhood of x intersects int(R). As int(R) = 
int(S) by assumption, we then have that every neighborhood of x intersects 
int(S). Thus, in order to establish that x E adh(___~ we need to show that x 
OS. As__ x ~ OR = R n ~ we have_ that x E R q B y  Theorem 3.5 we have 
that R ~ = (int(R)) c = (int(S)) ~ = S ~, so that x ~ SL As every neighborhood 
of x intersects inKS) we see that we also have that x E S, so that x ~ S N 
S ~ = OS. Thus we have established that x E adhS; consequently, adh(R) C 
adh(S). As the reverse containment follows by the symmetry in our assumption 
on R and S, the desired equality follows. �9 

Remark. It should be noted that Theorem 3.5 allows us to talk of  the 
set of  adherent points associated with the proposition P, even though P is an 
equivalence class of  sets. Hence we may unambiguously speak of  adh(P) 
even when P is a proposition and not just a set of  points. 

The following topological fact will be useful when we compare a proposi- 
tion P to its double negation -,-,P. 

Theorem 3.6. For any proposition P, adh(-~-,P) C_ adh(P). 

Proof. Let P0 be the canonical representative of  P and let Q0 -- 
int{ [.int(P~0)] c } be the canonical representative of  ' , ~ P  (as we saw in Theorem 
2.3 that P 4: --,~P, so there is no reason to expect that P0 = Q0). Theorems 
3.4 and 3.5 imply that the present result will be established if we prove that 
0(Qo) C_ 0(Po). 

Let x ~ 0(Qo); then by the definition of  Qo and the definition of  the 
boundary of  a set we have that 

x ~ int([int(~o)] ~) O {int([int(~o)]~)} ~ 

We must first establish two facts about the sets in this intersection: 

1. {int([int(P~o)]~)} c_C_ P~o. 
2. int([int(P~o)] ~) C_ Po. 

The derivation of item 1 is as follows: 

int(~o) C_ P6o 

lint(P60)] c _D (P6) c 
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int{ [int(P'6o)] c } D int{(P~o) ~ } 

= int(Po) 

= Po 

(int{ [int(~o)]*}y C_ 

(int{ [ int (~o)]~})  ~ C_ Pro 

Item 2 is derived similarly: 

Po C_ Po 

t~o ~_ (Po) c 

int(/~o) _~ int{(Po) c} 

= ( p o )  c 

[int(P~o)] c C_ {(Po)C} c = Po 

int{[int(P6o)] c} C_ int(Po) C_ eo 
l - -  

int{[int(~o)] c} C_ Po = Po 

We are now able to prove that OQo c OPo as follows: 

x ~ int{[int(~o)] c} O {int{[int(P~o)] ~} }~ 

_C int{[int(P~o)] c} n ~o 

C _ P o n ~  

= OPo 

Thus OQo c_ OPo, which establishes our result. �9 

For a proposition P in bivalent open phase space logic, we saw that a 
measurement might verify P or it might not verify P. However, if a measure- 
ment does not verify P, we cannot conclude that this measurement gives us 
that P is false. We will now describe a three-valued open phase space logic 
in which propositions may be naturally assigned values of  "true" or "false" 
by a given measurement. The price to be paid is that a given measurement 
may also result in a value of  "indeterminate" being assigned to P. We shall 
assign truth values according to the following criteria: 
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Definition 3. 7. Let P be a proposition in open phase space logic and let 
m be a measurement result. Suppose that Pi is any set in [P]. Then the 
proposition P will be assigned the truth value: 

(1) t rue if m verifies P; 
(2) false if m does not verify P but m n adh(Pi) = 0; 
(3) indeterminate  if m does not verify P, but m n adh(Pi) :/: 0. 

A few observations concerning this definition are in order. In view of 
our measurement theory, these three truth values are sufficient for all possible 
measurements of a system designed to verify a proposition P. Theorem 3.5 
implies that all sets in a given proposition (an equivalence class) will have 
the same set of  adherent points. Hence the assignment provided by Definition 
3.7 is well defined. As measurements are identified with open sets, any 
measurement of P which contains adherent points of  a set P,. ~ P must also 
contain interior points of Pi. Thus, there exists a more precise measurement 
consistent with the current measurement which might verify P; i.e., the 
measurements which contain adherent points of the representatives of P are 
precisely those measurements which do not verify P and were inconclusive 
as to whether or not P is false. 

We now turn our attention to statements whose interpretation in bivalent 
open phase space logic differs from its interpretation in three-valued open 
phase space logics. Recall that in bivalent open phase space logic our "truth 
values" were "verified" and "unverified." One of  our motivations for the 
three-valued logic developed here was to recover a natural notion for the 
valuation of propositions as being "true" or "false." Of course the notions 
of verified .and truth are related: We say, using the three-valued logic, that a 
measurement determines that a proposition is true if the measurement verifies 
the proposition and a proposition is determined to be false if the measurement 
verifies the negation of the proposition. As we have seen, we cannot equate 
the ideas of"true" and "verified," as it is conceivable that neither a proposition 
nor its negation will be verified by a suite of  measurements. This is the 
reason why we need the value of "indeterminate" along with those of  "true" 
and "false." 

Theorem 3.10 below is an example of a statement which can be made 
using three-valued open phase space logic which has no natural analog in 
the bivalent open phase space logic. We may think of  this theorem as a 
weaker form of tertium non datur. Before we turn to the proof of Theorem 
3.10 we need to establish two technical lemmas concerning adherent points 
associated with an element of  a proposition of  the form P v ~P. 

Lemma 3.8. If Q is an open set, then Q u int(Q ~) = [adh(Q)] c. 
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Proof. Let x e Q U (int(Q~)); then x �9 Q or x �9 int(QC). Consider the 
case where x e Q. As Q is an open set, we know by Theorem 3.4 that aQ 
= adh(Q). Also, as Q is open, it contains none of  its boundary points, so x 
~t aQ = adh(Q). S ox  �9 [adh(Q)] c. I fx  �9 int(Q~), then there is a neighborhood 
Nx of  x such that Nx C int(Q~), so Nx C (Q~), which implies that N~ tq Q = 
0. Thus x ~t OQ = adh(Q). Thus we also have in this case that x �9 [adh(Q)]L 
Thus Q U int(Q c) c_ [adh(Q)]L Conversely, let x �9 [adh(Q)]L Then x is not 
an adherent point of  Q, so x is not in the boundary of Q. Thus x �9 int Q = 
Q or x �9 int(Q~), i.e., x �9 Q u int(Q~). Thus, we have established that x �9 
[adh(Q)] ~ C Q u (int(Q~)) and the equality follows. �9 

Lemma 3.9. If Q is an open set, then adh(Q) = adh(Q O (int(Q~))). 

Proof. As Q U (int(Q~)) is the union of  open sets, it is an open set, so 
Theorem 3.4 gives us that adh(Q U (int(Q~)) = 0(Q U (int(Q~)). By Lemma 
3.8, the boundary of  Q u (int(Q~)) is equal to [adh(Q)] c R ([adh(Q)]C) c. We 
also know by Lemma 3.8 and the definition of  boundary that [adh(Q)] c = 
X and that ([adh(Q)]~) r = adh(Q) = adh(Q). Hence 

adh(Q U (int(Q~)) = X 13 [adh(Q)] = adh(Q) �9 

Theorem 3.10. The proposition P v ~P  is never false (i.e., no measure- 
ment can verify the negation of  P v ~P). 

Proof. Let P be a proposition. By definition we have 

P v -~P = [PiJ v [(int Pj)c] 

= [int Pi] v [int((int Pj)r 

= [int Pi U int((int Pj)~)] 

= [int Pi U int((int pi)c)] 

By Lemma 3.10 we have 

P v "*P = [(adh(int pi))c] (17) 

If we let P0 be the canonical representative of  P (i.e., the unique open set in 
P), then adh(int Pi) = OPo, which is a closed set. Thus we have 

P v --~P = [(OPo) ~] (18) 

As OPo is closed, (OP0) r is an open set and so it is the canonical representative 
of P v -~P. 
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If  we assume that P v -~P is false, then, by definition, it must be the 
case that ~(P v "~P) is verified, but 

~(P  v - ,e)  = -,[(0p0) c] 

= [int((OPo)C) c] 

= [int(0P0)] 

For any set S it is the case that int(0S) = fl (Munkres, 1974). Thus -~(P v 
-~P) = [0] = 0. That is, for any proposition P, the negation of P v -~P is 
always unverified. Hence, its negation can never be verified, so P v -~P is 
never false. �9 

Remark.  One might be tempted to prove that P v -~P is never false by 
involving the equivalence P v ~P  = -~(P ^ -~P) and noting that P ^ -~P is 
always false (never verifiable). While it is true that P ^ ~P  is always false 
in three-valued open phase space logic (see Theorem 2.4), the proposed 
equivalence (P v -,P = ~(P ^ -~P)) does not hold in open phase space logic 
(see Theorem 2.5). Consequently, a more involved proof for Theorem 3.10 
is called for in three-valued open phase space logic. 

The question arises: What can be said about ~P  and - ~ P  given that a 
measurement assigns a particular truth value to P? Theorems 3.11-3.13 and 
Corollary 3.14 provide the answer. 

Theorem 3.11. I fa  measurement assigns true to P, then the same measure- 
ment assigns false to -~P and true to -~P .  

Proof. Let P be proposition which is verified by a measurement m. By 
definition, this means that m is an open set such that m _C int(Pi), where Pi 
is any set in P. In order to show that m makes ~P  false, we must show that 
m A int(Qj) = 0, where Qj is any element of  -~P (see the discussion following 
Definition 3.7). By the definition of  negation we may set Qj = int(Pi)L where 
Pi is the element of  P described above. As m C_ Pi it must be the case that 
m f-) (Pi) ~ --- ~1. Thus, as int((Pi) c) C (Pi) c, w e  have that m f-) int((Pi) c) = ~. 
As m does not verify -~P and m does not contain any adherent points of ~P, 
we say that m assigns false to ~P. 

In order to prove the second part of the theorem we must show that m 
C int R~, where Rk is some element of ~ P .  By Theorem 3.10 we have that 
P E -~-~p, by which we mean that any element of P is a subset of some 
element of ~-~P. Thus for the set Pi described above, there is some R~ 
~ P  such that Pi C_ R~; consequently, m C_ int Ri. Thus m assigns true 
to -~-~P. �9 

The proof of the following theorem is dual to the proof of  Theorem 
3.11 in the sense that arguments for m C_ int S (where S is a set) are replaced 
by arguments for m A int S = 0 and vice versa. 
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Theorem 3.12. If a measurement assigns false to P, then the same mea- 
surement assigns true to ~ P  and false to -~-~P. 

We now look at the remaining case: m assigns the value of indeterminate 
to P. 

Theorem 3.13. If a measurement assigns indeterminate to P, then the 
same measurement may assign true or m may assign indeterminate to ~ , P .  

Proof. We will prove that m will not assign a value of  false to ~'~P and 
we then show by example that each of  the remaining possibilities is obtained. 
Let m be a measurement which assigns indeterminate to P. By definition m 
must contain adherent points of  P. By Theorem 3.6, adh(~P))  C_ adh(P), 
but by Theorem 3.10, P E__ - ~ p .  Thus, if m does not contain any adherent 
points of  ~--,P, then m must be contained entirely in int Rk, where Rk E ' ,~P.  
That is, if  m does not assign indeterminate to '1--1/', then m must assign true 
to ~ P .  Thus m cannot assign false to - ~ P .  

For the example of  an m assigning indeterminate to P and true to ~-~P, 
consider the proposition used in our proof of  Theorem 2.4: Suppose that our 
phase space is R 2 and that our proposition A is the equivalence class of sets 
whose complement is the y axis. Further, let m be the measurement m = 
{ (x, y) l - 1  < x < 1 }. We see that m contains adherent points of  A and so 
m assigns indeterminate to A, but -~-~A = 1, so m assigns a value of true 
to -~-~A. 

For the example of  an m assigning indeterminate to P and indeterminate 
to ~-~P, consider the following proposition: Suppose that our phase space is 
R 2 and that our proposition B is the equivalence class of  sets whose interior 
is the left half-plane; i.e., the canonical representative is B0 = {(x, y)lx < 
0}. Again, let m be the measurement m = {(x, y) I -~l  < x < 1}. We see 
that m contains adherent points of  B and so m assigns indeterminate to B 
and in this case - ~ B  = B, so m also assigns indeterminate to ~~B. �9 

Corollary 3.14. If a measurement assigns indeterminate to P, then the 
same measurement may assign false or m may assign indeterminate to ~P. 

Proof. If  m is assigned true to -~P, then by Theorem 11, m would assign 
false to ~-~P, which contradicts Theorem 3.13. If m only assigned false to 
-~P, then by Theorem 3.12, m must assign true to ~ P ,  which we have shown 
to not be the case in general. �9 

This last set of results (Theorems 3.11-3.13 and Corollary 3.14) points 
up an important fact about the operators in three-valued open phase space 
logic: the operators are not truth functional. That is to say, a given truth value 
for a measurement-proposit ion pair (m, P) does not give a well-defined truth 
value for an operator acting on P under m. Corollary 3.14 provides a prime 
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example of this lack of truth-functional behavior: If P is assigned the value 
indeterminate by m, then ~P may be assigned indeterminate or false by m. 

This lack of truth functionality is shared by other derived logics: the 
bivalent open and closed phase space logics, and the von Neumann-Birkhoff 
logic for quantum mechanics are all examples of non-truth-functional logics. 
For a discussion of this property for the von Neumann-Birkhoff logic see 
Gibbins (1987). That the bivalent phase space logics are not truth functional 
is closely related to the fact that the three-valued variety of open phase space 
logic is not truth functional. As we noted above, it is possible for a proposition 
and its negation to both be unverified. Of course it is also possible that a 
proposition may be unverified and for its negation to be verified. Thus the 
negation operator in open phase space logic under the bivalent interpretation 
is not truth functional. 

The fact that these logics are not truth functional is closely related to a 
perhaps more obvious property which they share: they are not truth-valued. 
That is, the connectives in these logics do not assign truth values to proposi- 
tions, rather they assign other propositions to propositions. This contrasts 
with the situation found in classical logic, where connectives assign truth 
values to sets of propositions. Indeed, the situation in classical logic is that 
we may think of operators as being either truth-valued or proposition-valued. 
Assigning a proposition to an operation acting on other propositions is equiva- 
lent to assigning a truth value to the operation based only on the truth values 
of the propositions upon which the operation is acting. With the derived 
logics listed above these two assignments are no longer equivalent. 

It is interesting to note that the logic derived using the unphysical 
measurement theory (where the imprecision of measurement is ignored 
entirely), which we discussed briefly in Section 1, provides an example of 
a derived logic which is truth functional. Upon reflection, it is seen that this 
follows from the fact that the space of states is simply the lattice of subsets 
of the state space which is a Boolean lattice and so is truth functional. One 
might conjecture that any derived logic under a bivalent interpretation is, in 
some sense, "isomorphic" to this derived logic. Of course any attempt to 
address this conjecture must largely be about making precise this notion of 
"isomorphic derived logics." 

4. A THREE-VALUED LOGIC WITH A TRUTH-FUNCTIONAL 
NEGATION 

In Section 3 we described a derived logic in which the negation operator 
is not truth functional. We observed that having operators which are not truth 
functional is a property exhibited by many derived logics; indeed, the only 
bivalent derived logic which is known to be truth functional is the logic 
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associated with the unphysical measurement theory. In this section we will 
describe a three-valued phase space logic in which the negation operator is 
truth functional. We will also discuss this logic's status as a derived logic. 

Recall that the obstacle to the negation operator being truth functional 
was that a measurement m might assign the value of indeterminate to a 
proposition P with the possibility that m could assign either a value of 
indeterminate or false to ~P. Upon closer consideration of the example used 
in the proof of Theorem 3.13, we realize that the fact that P and ~ - P  having 
different boundaries leads to the possibility that P is indeterminate but - ~ P  
is false. This motivates us to posit the following definition of a proposition 
in another logic related to the topological structure of phase space: 

Definition 4.1. For a set Pi in the topological space X, we define the 
proposition corresponding to Pi (denoted by P) to be the equivalence class 
[Pi] defined by the equivalence relation of having the interior and the same 
boundary as Pi. That is, Pj ~ Pi (and so Pj ~ [Pi] = P) if and only if int Pj 
= int Pi and aPj = aPi. 

The verification that the condition "same interior and same boundary as" 
gives an equivalence relation is straightforward. Unfortunately, this definition 
does not allow for definitions of connectives in terms of set operations as is 
the case for other derived logics for classical systems which have been 
previously described. This situation is remedied by the following two defini- 
tions and result; these provide a useful characterization of almost all (this 
restriction will be made clear by Definition 4.3) of the equivalence classes: 

Definition 4.2. Let S be a set in the topological space X. Then a point 
y on the boundary of S is a recreant point if and only if every neighborhood 
of y contains a point of the interior of S c. The set of all the recreant points 
of S is denoted by rctS. 

Remark. There exist boundary points of some set which are neither 
adherent nor recreant points of the set. For example, if S is an everywhere 
dense subset of X with empty interior, then every point in X is in 0S, but S 
has no adherent and no recreant points. 

Definition #.3. A proposition P is said to be proper if and only if ~t :~ 
P0 q: X (where P0 is the canonical representative of P). 

Remark. While mathematically the restriction to proper propositions 
may appear less than desirable, physically speaking it is quite reasonable. 
After all, physical measurements verifying statements about completely empty 
subsets of a phase space or for statements about the entire phase space are 
often impossible to accomplish. 
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Theorem 4.4. For nonempty sets Si, Sj, the condition [int(Si) O rct(Si)] 
= [int(Sj) O rct(Sj)] is equivalent to the condition that int(Si) = int(Sj) and 
os~ = osj .  

Remark. One should avoid the temptation of thinking that the equivalence 
condition is equivalent to [int(Si) O O(Si)] = [int(Sj) U O(Sj)]. The following 
is a counterexample to this: Let Si = R 2 = X and let Sj be the set of rational 
lattice points of R 2. We see that Sj is a dense subset of X with empty interior. 
Thus, in this case, 

[int(S3 t3 0(Si)] = X U 0 

= X  

= O U X  

= [int(Sj) U O(Sj)] 

We also see that int(Si) :/: int(Sj). 

Proof. Suppose that [int(S3 U rct(Si)] = [int(Sj) U rct(Sj)] and let x 
int(S/). We wish to show that x ~ int(Sj). As the interior of a set and its 
boundary are disjoint sets, it is the case that either x ~ int(Sj) or x E rct(Sj), 
but not both. Assume that x ~ rct(Sj); the contradiction at which we shall 
arrive will prove that x ~ int(Sj). 

By definition, there exist neighborhoods N~. of x such that N~. _C int Si 
and N~j of x such that N~j fq int ~ ~ 0. As x ~ Nxi N Nxj we know that N~i 
fq Nxj :/: O. Also, since N~i fq N~j is a neighborhood of x and x is a recreant 
point we know that (N~i VI N~j) fq int ~ ~ 0. As every set appearing in (Nxi 
f'l N~j) f'l int S~ is open, we have that the  set U = (N~i ('1 N~j) A int S~ is 
an open set. We note that U C_ int(Si) and that U C int(S~). Thus, every point 
of U is in int(S3 and so is not in rct(S3. Also, every point of U is in 
int(~)  and so is not in int(Sj) and is not in O(Sj), in particular, no point of 
U in rct(Sj). Thus, there is some point u ~ U such that u ~ (int(S3 U rct(S3) 
and u ~ (int(Sj) (.J rct(Sj)). This contradiction of our assumption proves that 
x ~ int(Sy). As x is an arbitrary element of  int(Si), we have shown that int(Si) 
C int(Sj). A symmetric argument proves that int(Sj) C int(S/). Thus we have 
that int(Si) = int(Sj). 

As the interior of  a set and its boundary are disjoint, this result also 
yields the fact that [int(Si) U rct(S3] = [int(Sj) t3 rct(Sj)] implies that rct(Si) 
= rct(Sj). Our result together with Theorem 3.5 also implies that adh(Si) = 
adh(Sj)). Thus, in order to prove that OSi = OSj we must show that the 
boundary points of each set which are neither adherent nor recreant are the 
same. By the definitions of adherent and recreant points, the only points in 
OS which are not in adh(S) nor in rct(S) will occur in open subsets V of X 
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where S f'l V is everywhere dense in V but such that V fq S has empty interior. 
In such cases (V tq S) C_ O(V N S). We also see that if int(Si) = int(Sj), 
adh(Si) = adh(Sj), and rct(Si) = rct(Sj), then those open subsets of X where 
S; is everywhere dense with empty interior must agree with the corresponding 
sets for Sj. Thus, [int(Si) U rct(Si)] = [int(Sy) N rct(Sj)] also implies that aSi 
= a s j .  

The proof of the converse int(Si) = int(Sj) and aSi = aSj, implies that 
[int(Si) f3 rct(Si)] = [int(Sj) f3 rct(Sj)] can now be proved using theorem 
3.5. The proof also involves the fact concerning points in a boundary that 
are neither adherent nor recreant, discussed above. �9 

As the equivalence classes in this logic are not canonically represented 
by the interior of a set, we will not refer to it as an open phase space 
logic; instead, we will refer to it as "modified phase space logic." Using the 
characterization of our proposition provided by Theorem 4.3, the connectives 
in modified phase space logic are defined as follows: 

Definition 4.5. Let P and Q be proper propositions. That is, P is the 
equivalence class [Pi], and Q is the equivalence class [Qj]. Then we define 
the logical operators '1 ("not"), ^ ("and"), and v ("or") as follows: 

P ^ Q = [(int(Pi) u rct(Pi)) f') (int(Qj) u rct(Qj))] (19) 

P v Q = [(int(Pi) u rct(Pi)) u (int(Qj) u rct(Qj))] (20) 

-"P = [(~)] = [(int P~/) t_J rct(~)] (21) 

That the operations ^ and v are well defined for proper propositions 
follows immediately from the distributivity of intersection over union and 
the associativity of the union operator. That the negation operator is well 
defined requires a bit more effort. 

Theorem 4.6. The negation operator as defined in Definition 4.5 is well 
defined for all proper propositions. 

Proof. Let Pi and Pj be any two elements of  the proposition P. By 
definition we have that int(P/) t.J rct(Pi) = int(Pj) tJ rct(Pj); we wish to 
show that int (~)  t.J rct(/~/) = in t (~ )  tJ rc t (~) .  By Theorem 4.4 we know 
that int(Pi) = int(Py) and that a(Pi) = a(Pj), so we have 

Pi = int(Pi)  U cg(Pi) 

= int(Pj) U a(Pj) 

=Pj 
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By Theorem 3.3_we have that(int(P~/)) c = (p~/)c = Pi. Hence, (int(P~/)) = 
((int(P~/))c) ~ = (Pi) ~. Thus, as Pi = ey, we have 

(int(P~i)) = (Pi) ~ = (pj)c = (int(P~j)) 

(with the final equality following from another application of  Theorem 3.3). 
By the definition of  the boundary of  a set, we have 0(P~i) = O(Pi) = O(Pj) 
= 0 ( ~ ) .  Thus, as we have shown that int(P~i) = i n t ( ~ )  and 0(P~i) = 
0(P~y), another application of  Theorem 4.3 gives us the desired equality. �9 

The extension of  the definitions of  the connectives to nonproper proposi- 
tions is straightforward but requires us to rely on Definition 4.1 to show that 
they are well defined, as the characterization given by Theorem 4.4 holds 
only for nonempty sets. Also one must distinguish between the empty proposi- 
tion and the proposition whose canonical representative is the empty set [0]. 
The latter object consists of  those nonempty sets with no recreant points and 
no interior. We must similarly distinguish between statements concerning the 
entire phase space X and the proper proposition IX]. Thus in modified phase 
space logic the empty proposition will be denoted by ~o and the "entire" 
proposition will be denoted by cx; of  course o~ will always be assigned the 
value false, while a will always be assigned the value true. With these 
comments in mind, the definitions of  the connectives are extended as follows: 

r ^ P = P (22) 

ot v P = r (23) 

~o ^ P = oJ (24) 

oJ v P = P (25) 

-~a = to (26) 

-~o~ = a (27) 

Now that we have shown that the negation operator is well defined in 
modified phase space logic, we now exhibit the property which is the main 
difference between this logic and open phase space logic: 

Theorem 4.7. In modified phase space logic, -~-~P = P. 

Proof. Let  Pi ~ P; by the definition of  the negation operator we have 

~ " P  = ~[(P~i)] 

= [ ( ( / ~ / ) ) q  

= [ P i ]  

= P n  
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In spite of the equality displayed in Theorem 4.6, this logic is not 
Boolean. In particular, tertium non datur  does not hold. If we take P to be 
a proposition such that Pi ~ P is an everywhere dense set with empty 
interior then 

P v ~ P  = [Pi] v ~[Pi] 

= [Pi] v [(pi)c] 

= [int(Pi) U rct(Pi)] v [int(P~i) U rct(P~i)] 

= [{int(Pi) U rct(Pi)} U {int(P~i) U rct(P[i)}] 

= [{0 u ~} u {~ u o}1 

= [ 0 ]  = 

Remarks.  1. Recall the distinction between the proposition to and [0]. 
It can be shown that [13] is the only proposition which is always indeterminate; 
i.e., every possible measurement will assign a value of indeterminate to 
this proposition. 

2. This same example demonstrates that the "law of noncontradiction" 
also fails to hold in this logic, in contrast to the situation in the three-valued 
open phase space logic. Indeed, if we simply substitute ^ for v in the 
derivation above and use the appropriate definitions, we see that this is 
the case. 

3. This example also shows that in modified phase space logic there is 
no analog to the weak version of tertium non datur found in three-valued 
open phase space logic (Theorem 3.10). 

We now describe the assignment of truth values in this logic as follows 
(recall that we say that a measurement m verifies a proposition if and only 
if m C Pi, where P i ~  P): 

Definition 4.8. Let P be a proposition in open phase space logic and let 
m be a measurement result. Suppose that Pi is any set in [P]. Then the 
proposition P will be assigned the truth value: 

(I) t rue  if m verifies P; 
(2) false if m verifies ~P; 
(3) indeterminate  if neither P nor -~P is verified. 

In contrast with the three-valued open phase space logic described in 
Section 3, the negation operator is truth functional in the three-valued modified 
phase space logic described here. 
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Theorem 4.9. In three-valued modified phase space logic, if a measure- 
ment m: 

(1) assigns a value of true to P, then m assigns a value of false to ~P; 
(2) assigns a value of false to P, then m assigns a value of true to ~P; 
(3) assigns a value of indeterminate to P, then m assigns a value of 

indeterminate to -~P. 

Proof. Let the measurement m verify the proposition P; that is, for any 
Pi ~ P it is the case that m C Pi. We wish to show that m verifies ~(~P). 
This follows immediately from Theorem 4.6. Thus m assigns a value of false 
to ~P. The proof of case 2 follows immediately from Definition 4.7. 

Let us now consider the third case: m assigns a value of indeterminate 
to P. We know that m cannot assign a value of true to -~P, as item 1 implies 
that ~(~P) is assigned a value of false by m. As we know, P = ~(~P),  so 
we have a contradiction. A similar contradiction is reached if we assume that 
m assigns a value of false to ~P. Thus m must assign a value of  indeterminate to 
~P. �9 

At the beginning of this section we stated that we would discuss the 
status of modified phase space logic as a derived logic, the issue to which 
we now turn. Westmoreland and Schumacher (1993) described a derived 
logic as the consequence of "a physically motivated theory of  measurement, 
which is in turn built upon the mathematical structure of a state space." The 
theory of measurement which was used to derive the three-valued open 
phase space logic described in Section 2 is described in Westmoreland and 
Schumacher (1993). Loosely speaking, this measurement theory allows for 
measurements of arbitrarily high but not infinite precision. We also recall 
that measurements are open subsets of phase space. The question of the 
whether open and closed phase space logics are derived logics is equivalent 
to whether or not distinct equivalence classes can be distinguished by open 
subsets of the phase space. Similarly, the question of modified phase space 
logic being a derived logic is equivalent to the question of whether or not 
equivalence classes in this logic can be distinguished by open sets. 

That is to say: Can we distinguish sets with distinct interiors or distinct 
boundaries by open sets? Let us now consider the first possibility: the interiors 
of A and B are distinct. We recall from Section I, Definition 2 of Westmoreland 
and Schumacher (1993) that two sets, say A and B, are distinguishable by 
open sets if there is some open set U such that U C A but U tZ B or vice 
versa. If the interiors of sets C and D have distinct interiors, then int C tZ 
int D or vice versa; without loss of generality, we may assume the former. 
In that case int C is the open set which distinguishes the equivalence classes 
[C] and [D]. 
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We now turn our attention to the other possibility: the boundaries of A 
and B are distinct. We also recall from Section I, Definition 1 of Westmoreland 
and Schumacher (1993) that two sets, say E and F, are distinguishable by 
open sets if there is some open set U such that U n E = 0 but U n F :/: 0 
or vice versa. Thus, if the boundaries of the sets A and B are distinct, then 
there is some point y such that y ~ OA but y ft OB or vice versa; without 
loss of generality, we may assume the former. In that case, for every open 
set Uy such that y E Uy it must be that Uy n A :~ 0 and there is some open 
set Vy such that y ~ Vy and Vy N B = 0. Thus, in this case we also have that 
A and B are distinguishable by open sets. We have now demonstrated that 
modified phase space logic is a derived logic. 

5. TWO EXAMPLES REVISITED 

Westmoreland and Schumacher (1993) applied bivalent closed phase 
space logic to the analysis of two elementary examples from the theory of 
classical dynamical systems. We will now analyze these examples using the 
two three-valued phase space logics developed here. We will find that in 
many respects the results of this analysis logic are intuitive and realistic. 

Our first example consists of a particle of unit mass moving in one 
dimension (denoted by coordinate q) in a double potential well, as sketched 
in Fig. 1. In addition to the conservative force, the particle is also subject to 
a drag force that opposes the particle's velocity. There exist three equilibrium 
points in this system: the origin q = 0 and the points A and B. A particle 
initially at rest at one of these points will remain at that point. 

The phase space of this system has two coordinates, which we may take 
to be q and t/. There are three fixed points in phase space, located at the 
equilibrium points along the q axis. The origin is a saddle point; but the 
points A and B are both attractors, i.e., states initially in sufficiently small 
neighborhoods of A or B approach these points asymptotically as t ---> oo. 

1 

V(q) 

,/, 
Fig. I. 
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We can consider, for instance, the set of all points in the phase space 
which eventually approach A under the equations of motion. This is known 
as the basis of attraction of the attractor A, and is shown as the shaded region 
in Fig. 2. The unshaded region in Fig. 2 is the basin of attraction of B. The 
boundary between these two regions, which consists of points that approach 
neither A nor B, is called the separatrix of the two basins. (The separatrix 
consists of a pair of trajectories that asymptotically approach the saddle point 
at the origin as t ~ oo, one from each side.) 

Consider the following statements: 

�9 PA: "The trajectory beginning at this point approaches A 
asymptotically." 

�9 Ps: "The trajectory beginning at this point approaches B 
asymptotically." 

These statements correspond to subsets of the phase space on which they 
are true. Naively, we can identify each statement with the basin of attraction 
of the corresponding point. 

However, suppose we consider these as propositions within open phase 
space logic. Then the proposition PA is an equivalence class of sets including 
those whose interiors are the basin of attraction of A. (Many other sets are 
also in this equivalence class; the smallest of them is the basin of attraction.) 
Similarly, PB corresponds to sets including those whose interiors are the basin 
of attraction of B. This is because only those points which are in either basin 
of attraction can be verified by some measurement as a state through which 
a particle will pass on its way to A or B. 

This has some interesting consequences. For instance, the propositions 
PA and PB are just the negations of one another: PA = ~P8 and PB = -~PA. 
The disjunction PA v P8 is no longer identically true, since the interiors of 
the basins do not cover the entire space. In fact, PAv Pa just corresponds to 

1~.2. 
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the complement of the separatrix. Finally, we note that the conjunction of PA 
and PB is identically false: PA ^ PB = 0. 

These observations concerning PA and PB are true regardless of whether 
we use a bivalent or a three-valued interpretation of open phase logic. The 
three-valued interpretation leads to statements which cannot be phrased in 
the bivalent version. For example, Theorem 2.10 implies that PAv Pa is 
never false; i.e., there is no measurement which will verify a state on the 
separatrix. Realistically, we know that the probability that the state of the 
system is exactly on the separatrix is zero. Thus, we would in practice 
conclude that the system must be in one basin or another (that is, PAv Ps 
must be true or unverified), and that it is in the basin for A if and only if it 
is not in the basin for B (that is, PA = -~PB). 

The fact that PAv Ps ~ [X] reflects the fact that points very near to 
(but not on) the separatrix are difficult to distinguish from it. (In fact, it may 
take a very long time for such a state to move away from the separatrix and 
approach either A or B.) If we employ a finite set of observations to determine 
in which basin of attraction the state of the system is, there will always be 
one or more possible outcomes--those outcomes that correspond to open 
sets containing points of the separatrix--that are consistent with either possi- 
bility. Any finite program of measurements used to determine the future 
destiny of the system will in some cases give rise to an ambiguous answer. 

The analysis of this system under the modified phase space logic is very 
similar. This arises from the fact that neither basin of attraction possesses 
any recreant points. Thus, the equivalence classes of PA and Ps consist of 
those sets which are equivalent to the basin of attraction of A (denoted by 
~ )  and the basin of attraction of B (denoted by 13B), respectively. We also 
have in this logic that "nP A = PB and vice versa. As we have that [13a U 13B] 
4: [X] = 1, we again have that tertium non datur does not hold in this case. 
It is true in this case, however, that the weaker version of tertium non datur 
does hold. As we noted earlier, this is not always the case in modified phase 
space logic. 

Our second example is a more abstract dynamical system whose phase 
space is atorns. A state is described by two coordinates, q and p, each of 
which ranges over values between 0 and 1. Opposite sides of the resulting 
square are "pasted" together, forming a toroidal phase space. The dynamics 
of the system are given by 

d 
dt q et 

d 
-~ttP=~ 3 
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where et and 13 are constants. The trajectory passing through a point (q0, P0) 
is this phase space (the orbit of this point) is shown in Fig. 3. 

The structure of the orbits in this phase space is determined by the ratio 
13/ot. If this ratio is a rational number, then the orbit will return to itself after 
a finite number of trips "around" the phase space. On the other hand, if the 
ratio is irrational, then the orbit will never return to itself. In fact, the orbit 
will be a dense subset of the phase space. 

Consider the statement P: "The orbit of (q0, P0) contains this point." 
Naively, this statement corresponds to the orbit in the phase space. If we 
interpret this statement as a proposition in bivalent open phase space logic, 
we see this situation from a different perspective. If the ratio 13/~t is rational, 
then P corresponds to the orbit as before. However, if the ratio 13/ix is irrational, 
then the orbit, while dense, has empty interior. In either case, this proposition 
is "false" with respect to bivalent open phase space logic. This is because 
no set of observations can guarantee that the state of the system lies on a 
particular orbit; the orbit, though dense, has no interior. If we try to ensure 
that the system is on the orbit, we cannot succeed. 

If we consider the proposition using the three-valued open phase space 
logic, the same result is obtained: P is always assigned the value false. In 
this case, this result follows from the fact that the elements of P have no 
interior and therefore no adherent points. 

Alternatively, if we interpret this statement in the modified phase space 
logic, we obtain yet another perspective. If 13/ot is rational, then the orbit is 
not dense; thus, the complement has nonempty interior. Hence there are 
measurements of P (those open sets which intersect the orbit) under which 
P is indeterminate. But it is also the case that there exist measurements of 
P (those open sets which do not intersect the orbit) under which P is false. 
In contrast, if 13/ct is irrational, P is always indeterminate, as there are no 
measurements which will verify P nor the negation of P. 

0 
0 

/ 

q 

Fig. 3. 
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6. D I S C U S S I O N  

Perhaps the first issue we should address in this section is why we have 
presented two different three-valued logics in this paper. One reason is that 
the development of the two logics follows naturally in the way presented. 
The three-valued open phase space logic is suggested by the fact that tertium 
non datur does not hold in open phase space logic. Modified phase space 
logic, in turn, is motivated by the fact that the negation operator, even in 
three-valued open phase space logic, is not truth functional. It is the desire 
to find a logic in which the negation operator is truth functional which leads 
us to consider the modified phase space logic. 

Another reason for the presentation of the two logics is that the differ- 
ences and similarities between them are interesting and instructive. For exam- 
ple, the three-valued open phase space logic is developed by making changes 
in the bivalent phase space logic which relate solely to the interpretation of 
propositions under measurements. That is, the identity of propositions as 
mathematical structures is the same in the bivalent and three-value versions 
of open phase space logic. The interpretation which we assign to these 
propositions is different in the two logics: In the bivalent case we interpret 
propositions under a given measurement as being either verified or not veri- 
fied. In the three-valued case we interpret propositions under a given measure- 
ment as being true, false, or indeterminate. 

In contrast, in developing the modified phase space logic we are required 
to effect changes in the syntactic structural features of the logic, as well as 
in the interpretation of the propositions. That is, the identity of the propositions 
as mathematical structures is changed in passing from the open phase space 
logic to the modified phase space logic. The differences which arise between 
the two logics, given the differences in their development, is interesting. 

The final reason which we shall give for the presentation of the two 
logics is that the way that each views propositions is quite different. The 
three-valued open phase space logic is firmly rooted in the verifiability 
approach to propositions concerning physical systems (Westmoreland and 
Schumacher, 1993). On the other hand, the modified phase space logic mixes 
the verifiability and falsifiability (Westmoreland and Schumacher, 1993) 
approaches to such propositions. This is reflected in the characterization of 
the equivalence classes provided by Theorem 4.6: the inclusion of the interior 
of a representative is related to the proposition's verifiability, while the 
inclusion of the set of recreant points is related to its falsifiability. 

We now turn to a comparison between the three-valued logics developed 
here and the three-valued logic developed by Hans Reichenbach for the 
analysis of quantum mechanical systems. At first blush one is perhaps more 
cognizant of a major difference between the approaches: Reichenbach's sys- 
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tem was developed for quantum mechanical systems, while the systems 
developed here are applicable to classical mechanical systems. While this 
distinction should be kept in mind, the fact that they are three-valued logics 
designed for the analysis of physical systems is important enough to make 
the closer examination of their similarities and differences worthwhile. 

One of the most striking features of Reichenbach's system of three- 
valued logic is that it does not possess one negation operation, but three; 
they are defined as follows. If the proposition P has the values T, /, F 
(corresponding to "true," "_indeterminate," and "false," respectively) the 
"complete negation" of P, P, has the values I, T, and T respectively. (Note 
that we are here using Reichenbach's notation. The overbar in this instance has 
no connection with closure, the operation denoted by the overbar elsewhere in 
this paper.) The "cyclical negation," ~P, is defined as having the values/, 
F, and T, respectively. Finally, the "diametrical negation," -P ,  is defined as 
having the values F, L and T, respectively. 

This feature of multiple negations is not possessed by either the three- 
valued open phase space logic nor the modified phase space logic. As the 
negation in the three-valued open phase space logic is not truth functional, 
it does not correspond exactly with any of the negations in Reichenbach's 
system. In contrast, by Theorem 4.9, the negation in the modified phase 
space logic corresponds exactly with the "diametrical negation" of Reichen- 
bach's system. 

Several writers (Hempel, 1945; Turquette, 1945; Nagel, 1944) have 
criticized Reichenbach's system for not explaining the exact meaning of the 
truth values T, F, and I. Indeed, Turquette (1945) notes that the criterion for 
I is described by terms such as "unknowable to Laplace's superman" or 
"unknowable in principle." No such criticism applies to either of the three- 
valued logics described here. The truth values are determined solely by the 
mathematical structures with which the propositions are identified and by 
the measurements run to verify them. This is a feature of derived logics in 
general: such logics reflect the fact that the verification of an empirical 
proposition about a physical system depends upon some process of measure- 
ment. As measurement is itself a physical process, the types of propositions 
which can be verified is restricted by the physical facts relating to the system. 

Reichenbach was mindful of such considerations when he developed 
his system for quantum mechanics. For example, he makes the following 
statement (Reichenbach, 1944): 

The quantum mechanical significance of the truth-value indeterminate is made clear 
by the following consideration. Imagine a general physical situation s, in which we 
make a measurement of the entity q; in doing so we have once and forever renounced 
knowing what would have resulted if we had made a measurement of the entity p. It 
is useless to make a measurement of p in the new situation, since we know that the 
measurement of q has changed the situation. 
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Thus, while Reichenbach developed his system with the problem of measure- 
ment in mind, his system had no mechanism for assigning truth values based 
on measurements. This, of course, is precisely the problem identified by 
Hempel, Turquette, Nagel, and others. 

This is in contrast with the approach taken by von Neumann and Birkhoff 
(1936) in the system which they developed for the analysis of quantum 
systems. In the von Neumann-Birkhoff logic, propositions are identified with 
closed subspaces of the Hilbert space which serves as the state space for the 
quantum mechanical system. In a Hilbert space H, closed subspaces may be 
identified with the projection operator which projects any vector in H onto 
that subspace. As not all projection operators on a Hilbert space commute, 
there are propositions, P and Q say, such that P and Q cannot both be 
measured for by any suite of measurements. As the von Neumann-Birkhoff 
logic is derived from the Hilbert space structure of the state space, it reflects 
this fact in a direct way. 

Similarly, the three-valued open phase space logic and the modified 
phase space logic are derived from the topological state space of the classical 
systems. This provides a direct mechanism for assigning truth values which 
in no way depends upon epistemically vague mechanisms such as "Laplace's 
superman." We see that the logics presented here in some sense represent a 
synthesis of the approaches of Reichenbach and von Neumann-Birkhoff: 
they are three-valued systems, but the structure of the propositions is derived 
from the state space. Of course this is only in a weak sense, as the logics 
developed here are not designed for the analysis of quantum mechanical 
systems. This does suggest the intriguing possibility that such a synthesis 
may exist for quantum logics. 

Geach (1972, pp. 195-198) makes an observation concerning three- 
valued logics to which we should respond here. The point Geach makes is 
that one must be careful about interpretations of the middle truth value, which 
he denotes by X. He points out that interpretations of X as "doubtful" or "as 
probable as not" are problematic. He states that, in the systems of three- 
valued logic he considers, the law of noncontradiction is not a tautology. 
Given that P has value X, it follows that ' ,P  also has the value X, and so P 
^ ",P has the value X--not  "false," as required by noncontradiction. This 
raises the questiorr of whether or not Geach's objection applies to the systems 
presented here. 

In the three-valued open phase space logic, the law of noncontradiction 
continues to be a tautology; i.e., for any proposition P it is the case that 
P ^ " P  is assigned the value false by any measurement. This follows from 
the definition of the operator ^ in the open phase space logic: 

P ^ Q = [Pi N Qj] (28) 
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So, if we replace Q with ~P we have 

P ^ "~P = [Pi n P~] 

= [ 0 ]  

Recall that in the three-valued open phase space logic [0] is always false. 
Consequently, Geach's comment does not apply directly to this particular 
logic. 

This is not the case, however, with the modified phase space logic. In 
this logic, we observed in the remarks following Theorem 4.7 that the law 
of noncontradiction does not hold in this logic, precisely the situation with 
which Geach was concerned. However, the law of noncontradiction falls in 
an interesting way: the statement P ^ -~P is assigned the value of indeterminate 
by every possible measurement only when P, and so ~P, is the equivalence 
class of sets which are everywhere dense in the phase space but have empty 
interior. (It is a straightforward exercise to show that this collection forms 
an equivalence class.) In general, P A -~P can be assigned the value indetermi- 
nate by a measurement m only if P0 has some recreant points--points in 
regions of phase space where P and -~P are indistinguishable by measurement. 

In more natural language, this corresponds to: the measurement m does 
not warrant the truth of either P nor ~P. Again the question is: Does Geach's 
criticism apply to this interpretation as it does to interpretations such as "P 
is doubtful" or "P is as likely as not"? Let us consider the always-indeterminate 
proposition; i.e., the equivalence class of sets which are everywhere dense 
with empty interior. Such propositions do arise in physical systems; recall 
that the example in Section 5, whose phase space is a toms, involves such 
a proposition when the ratio of the parameters is irrational. For such a 
proposition, it is indeed the case that both P and ~P are assigned the value 
of indeterminate (in fact P = -~P as equivalence classes in this system), just 
as Geach observes. Is it invalid to then say that P ^ "~P is also assigned the 
value of indeterminate by any measurement? 

Given the interpretation used here, it is not invalid to make such a 
statement. One must be careful not to confuse propositions with subsets of 
the phase space: propositions are equivalence classes of subsets of the phase 
space. Measurements will not be able to distinguish between subsets, but 
only between classes of subsets. In our example, the fact that P A -~P is 
always indeterminate reflects the fact that no measurement will verify either 
P ^ ~P or its negation (which is also always indeterminateIand thus equiva- 
lent to P ^ ~P and P and ~P!). Indeed, a closer analysis of the logic in this 
case implies that no representative P0 of P can be distinguished from its set 
complement P~0 by any measurement of finite precision. This result, however 
surprising, does reflect the theory of measurement in an informative way. 
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Thus we see that the interpretation of the modified phase space logic 
is not invalidated by Geach's criticism. First of all, the failure of noncontradic- 
tion only occurs when a proposition and its negation are inseparably inter- 
twined in some region of phase space. Ordinary examples [such as Geach's 
(1972) "It is probable that it will and will not rain tomorrow"] will rarely 
exhibit this property. In those cases in which this mixing of P and ' ,P  does 
occur (such as the second example in Section 5), the ambiguity of measure- 
ment results yields a more subtle notion of indeterminacy than merely being 
"doubtful" or "as probable as not." This is perhaps easier to appreciate at 
the level of logical structure than at the level of natural language. 

The developments presented here raise several interesting questions. 
One, which we noted previously, is the possibility of a three-valued derived 
logic for the analysis of quantum mechanical systems. There seem to be at 
least two possible approaches to developing such a system. One is to modify 
the theory of measurement so that the quantum mechanical facts of life are 
reflected in the axioms for measurement. The second approach would be to 
look for substructures of the quantum mechanical state space which can 
provide a natural three-valued interpretation. 

Another question which arises from this development is how the three- 
valued logics developed here compare to the three-valued logics developed 
by others, such as Lukasiewicz (1970) and Rosser and Turquette (1952). Our 
three-valued logics appear as very natural developments in the program of 
measurement-based "derived logics" for physical systems. We have only 
touched on the relation of these systems of logic to that of Reichenbach. 
Further comparisons should deepen our understanding of these and other 
three-valued systems. 
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E r r a t u m  

Three-Valued Derived Logics for Classical Phase 
Spaces 

Michael D. Westmoreland, Benjamin W. Schumacher, and 
Steven C. Bailey 

The above paper from International Journal o f  Theoretical Physics, 35, 
31-62  (1996) contains an erroneous deftnition. Definition 4.3 (page 47) 
should be replaced by the following: 

A proposition P is said to be proper if and only if there is no open set 
U such that P0 is dense in U but int(P0 fq U) = fl, where P0 is the canonical 
representative of  P. 

Theorem 4.4 should then be restricted to sets which are elements of  
proper propositions. 

The motivation for this corrected definition is the same as that for 
the original definition: the measurement status of  everywhere dense sets is 
problematic. For example, in the 2 dimensional Cartesian coordinate plane, 
there is no finite collection of  finite precision measurements which wilt 
distinguish between the set of  points with rational x-coordinate and the set 
of  points with irrational x-coordinate. It was originally thought that these 
problems could be avoided by excluding the proposition where the canonical 
representative was the entire space and, by duality, excluding the empty 
proposition. We have since realized that this reasoning is incorrect. In a sense, 
the measurement problem related to everywhere dense, empty interior sets 
is scale invariant. That is, in order to have distinguishable propositions, we 
must exclude those which are locally dense with empty interior; hence, the 
corrected definition. 

It should be noted that there is a three-valued derived logic for phase 
spaces which, in general, is not equivalent to the ones described in the 
paper but it does avoid the notion of  proper and improper propositions. The 
description of  this logic is beyond the scope of  the subject paper and certainly 
beyond the scope of this correction. 


